Top 140 I0S Mobile Testing Interview Questions
(with common XCUITest Code challenges )

Author: Lamhot Siagian LinkedIn

Chapter 1 — Introduction to XCUITest

1.

10.

What role do UI tests play in an iOS QA strategy, and how do they differ
from unit tests?

Compare XCUITest and Appium—what are the pros and cons of each for
iOS UI automation?

Describe the architecture of the XCTest framework: what are test targets,
bundles, and runners?

How does Xcode discover and execute Ul tests under the hood?

In your first XCUITest, how would you verify that your app has success-
fully launched?

What are the limitations of XCUITest compared to lower-level testing
(e.g., unit or integration tests)?

Explain how the test bundle communicates with the host app at runtime.
How do you structure your XCUITest target within an Xcode project for
maximum maintainability?

Describe a scenario where Ul tests would catch issues that unit tests would
not.

What’s your strategy for organizing and naming XCUITest cases and meth-
ods?

Chapter 2 — Environment Setup & Best Practices

1.

How do you add and configure a Ul-test target in Xcode for an existing
app?

Explain the importance of signing and provisioning profiles for Ul-test
targets.

How do launch arguments and environment variables enhance test flexi-
bility?

. Why are accessibility identifiers critical for stable UI tests, and how do

you apply them in SwiftUI vs. Storyboards?

Describe a best-practice folder structure for keeping test assets and data
organized.

How would you handle cases where identifiers aren’t available on a third-
party SDK view?

What’s your process for synchronizing the host app’s build settings with
the test target?

How do you ensure tests remain reliable when the app’s Ul layout changes?


https://www.linkedin.com/in/lamhotsiagian

9.
10.

Explain how you’d manage secrets or credentials required during UT tests.
How do you integrate code reviews or linting into your XCUITest code-
base?

Chapter 3 — Locating Elements

1.

10.

What are the differences between app.buttons[".."], app.staticTexts["..

and app.otherElements[".."]7

. How do NSPredicate queries improve element-lookup robustness?
. Write an NSPredicate that matches any button whose label begins with

113 OK"'

. When would you choose coordinate-based interactions over element

queries?

. Explain the trade-offs between accessibility labels, identifiers, and traits.
. How do you debug “element not found” errors in XCUITest?
. Describe a fallback strategy when an element’s identifier changes

frequently.

. How can you combine multiple query filters (e.g., type AND label) in

code?

. What performance considerations exist when querying large view hierar-

chies?
How do you verify that the element you located is indeed unique on screen?

Chapter 4 — Basic Interactions

1.

How do you simulate a text entry into a secure text field?

2. What methods exist for dismissing the system keyboard, and when should

©w

you use each?

Explain the difference between .tap() and .press(forDuration:).
How do you verify an element is both present and hittable before interact-
ing?

Describe how .waitForExistence(timeout:) works under the hood.
What’s the benefit of using XCUITest assertions (XCTAssert*) versus man-
ual if-else checks?

How do you retrieve and validate the value of a UI element (e.g., a text
field)?

Discuss strategies for typing into a field that already contains placeholder
text.

How would you handle intermittent failures due to keyboard focus issues?

. Explain a scenario where you’d need to chain interactions (e.g.,

tap—type—swipe) within one test.

Il]’



Chapter 5 — Gestures & Advanced Actions

1. How do you programmatically perform a swipe on a XCUIElement?

2. Describe how .pinch(withScale:velocity:) differs from .press(forDuration:thenDragTo:).
3. What are the common pitfalls when automating pinch-to-zoom on image
views?

How do you scroll within a table view versus a collection view?

Explain how you’d calculate the coordinates for a drag-and-drop gesture.
How do you test multi-finger gestures if needed?

What strategies ensure gesture reliability across different screen sizes?
How can you detect and handle overscroll behavior in a scroll view?
Describe how you'd test a custom gesture recognizer in your app.

10. What role do velocity and duration play in advanced gesture accuracy?

© XN

Chapter 6 — Synchronization & Flakiness

1. Why is sleep() discouraged in XCUITest, and what should you use in-
stead?

2. Compare waitForExistence(timeout:) vs. expectation(for:evaluatedWith:handler:).

3. How do you use XCTNSPredicateExpectation to wait for dynamic con-
tent?

4. Describe three common causes of flaky UI tests and how to mitigate each.

5. Explain how network delays can affect test stability and how to work
around them.

6. What’s the benefit of isolating animations from test execution?

7. How do you verify an activity indicator has disappeared before proceeding?

8. Describe using launch arguments to enable “fast-path” test modes in your
app.

9. How do you structure retry logic for transient Ul failures?

10. Explain how CI environments may exacerbate flakiness compared to local

runs.

Chapter 7 — Alerts, Sheets & System Prompts

1. How do you tap an alert button once it appears?

2. Explain how addUIInterruptionMonitor works for system dialogs.

3. What’s the typical pattern for handling a location or camera permission
prompt?

How do you trigger and verify an alert appears in your test?

Describe error-handling if an expected alert never shows up.

How can you test multiple sequential system prompts in one flow?

What are the limitations of UIInterruptionMonitor?

How do you return the app to a clean state after dismissing alerts?

®© N ot



9.
10.

Explain strategies for testing custom action sheets.
How do you record and replay interactions with modal sheets?

Chapter 8 — Complex Controls

© XN W

10.

How do you adjust a UIPickerView wheel to a specific value?

Explain how .adjust (toNormalizedSliderPosition:) works under the
hood.

How can you verify the selected segment in a UISegmentedControl?
Describe testing a toggle switch’s on/off states.

What’s your approach for interacting with date pickers in different locales?
How do you test custom controls that aren’t standard UIKit elements?
How do you chain picker and slider interactions in one test?

Explain the pitfalls of testing nested container controls.

How do you validate that the Ul reflects data changes after control adjust-
ments?

What strategies ensure these interactions work on both iPhone and iPad
form factors?

Chapter 9 — Test Data & Mocking

—_

COXN TR W

How do you inject mock URLs or flags into your app via launch arguments?
Describe using local JSON bundles to stub network responses.

Explain how you’d integrate a lightweight mock server like Swifter.

How do you switch between production and test endpoints at runtime?
What are the benefits of dependency-injecting your network layer for tests?
How do you verify UI behavior when the API returns an error?

Describe organizing test fixtures and sample data in your repo.

How do you handle large datasets that don’t fit into JSON bundles?
What strategies exist for resetting mock state between test methods?
Explain how you’d audit that no real network calls slip through in CI.

Chapter 10 — Screenshot & Recording

N otE W

How do you capture a screenshot on assertion failure?

Explain using XCTAttachment to embed images in test reports.

What setup is required to enable video recording in XCUITest?

How do you configure your scheme to automatically record test sessions?
Describe strategies for naming and organizing captured assets.

How can you compare screenshots to a reference baseline?

What are the trade-offs of embedding attachments vs. external storage?



8.
9.
10.

How do you ensure recordings don’t bloat your CI artifacts?
Explain how you’d capture a photo of a specific view hierarchy region.
What’s your process for reviewing and triaging screenshot failures?

Chapter 11 — Performance & Launch Metrics

=

OO U W

. How do you measure application launch time using measure (metrics:)?
. Describe adding custom signposts for key user-flow benchmarks.
. Explain how to interpret the results of an XCTOSSignpostMetric.

How do you configure performance tests to run only on demand?
What’s the impact of performance tests on overall test-suite runtime?
How do you detect regressions in launch time across commits?
Describe integrating metric results into a CI dashboard.

. How do you handle noise from background system processes?
. Explain best practices for isolating the test device’s performance.
. How do you verify that a code change improved a measured metric?

Chapter 12 — CI/CD Integration & Parallel Tests

1.

—_

O © 00D U W

How do you configure GitHub Actions (or Jenkins) to run XCUITests on
simulators?

. Explain the -parallel-testing-enabled YES flag and its implications.

How do you shard tests across multiple simulators or devices?

. Describe handling simulator lifecycle (creation, cleanup) in CI.

How do you manage UDID and signing for real-device farms?
What strategies ensure tests remain isolated when run in parallel?

. Explain collecting and aggregating test reports from distributed runs.

. How do you handle flaky tests differently in CI vs. local development?

. Describe monitoring resource usage (CPU, memory) during CI test runs.
. How would you roll out a test-only build to your CD pipeline without

impacting production?

Chapter 13 — 20 common XCUITest challenges you’ll often
encounter in real-world iOS UI tests

1.

Verify App Launch

func testAppLaunch() {
let app = XCUIApplication()
app.launch()
XCTAssertTrue(app.buttons["mainButton"] .exists)



. Tap a Button and Verify Navigation

func testTapLoginButton() {

}

let app = XCUIApplication()
app.launch()
app.buttons["loginButton"].tap()

XCTAssertTrue(app.staticTexts["welcomeLabel"] .waitForExistence (timeout:

. Enter Text in a Text Field

func testEnterUsername() {

}

let app = XCUIApplication()

app.launch()

let usernameField = app.textFields["usernameField"]
XCTAssertTrue (usernameField.exists)

usernameField.tap()

usernameField.typeText ("test_user")

XCTAssertEqual (usernameField.value as? String, "test_user")

. Handle Secure Text Field

func testEnterPassword() {

}

let app = XCUIApplication()

app-launch()

let passwordField = app.secureTextFields|["passwordField"]
passwordField.tap()

passwordField.typeText ("POsswOrd")

// Secure fields return eeeee, so check that it isn’t empty
XCTAssertFalse((passwordField.value as! String).isEmpty)

. Dismiss Keyboard

func testDismissKeyboard() {

}

let app = XCUIApplication()

app-launch()

let field = app.textFields["searchField"]
field.tap()

field.typeText("hello")
app.keyboards.buttons ["Return"] .tap()
XCTAssertFalse (app.keyboards.element.exists)

. Scroll a Table View to a Specific Cell

func testScrollToCell() {

let app = XCUIApplication()
app.launch()

5))



10.

}

let table = app.tables["mainTable"]

let cell = table.cells.element (boundBy: 20)
table.scrollToElement (element: cell)
XCTAssertTrue(cell.exists)

// Helper extension:
extension XCUIElement {

3

func scrollToElement (element: XCUIElement) {
while !element.isHittable {
swipeUp ()

Scroll a Collection View

func testScrollCollection() {

}

let app = XCUIApplication()

app-launch()

let collection = app.collectionViews["imageGrid"]
let targetCell = collection.cells["imageCell_50"]
collection.swipeUp() // or loop until hittable

XCTAssertTrue(targetCell.waitForExistence(timeout: 5))

Swipe to Delete a Cell

func testSwipeToDelete() {

}

let app = XCUIApplication()

app.launch()

let cell = app.tables["todoList"].cells["task_3"]
cell.swipeLeft ()

cell .buttons["Delete"] .tap()
XCTAssertFalse(cell.exists)

Select from a Picker Wheel

func testSelectPickerValue() {

}

let app = XCUIApplication()

app.launch()

app.buttons["showPicker"].tap()

let picker = app.pickers.pickerWheels.element
picker.adjust (toPickerWheelValue: "March")
XCTAssertEqual (picker.value as? String, "March")

Toggle a Switch

func testToggleSwitch() {



let app = XCUIApplication()

app.launch()

let darkModeSwitch = app.switches["darkModeSwitch"]

let originalState = darkModeSwitch.value as! String

darkModeSwitch.tap()

XCTAssertNotEqual (darkModeSwitch.value as! String, originalState)
b

11. Adjust a Slider

func testAdjustSlider() {
let app = XCUIApplication()
app.launch()
let volumeSlider = app.sliders["volumeSlider"]
volumeSlider.adjust (toNormalizedSliderPosition: 0.7)
XCTAssertEqual (volumeSlider.value as! String, "70%")
}

12. Use a Segmented Control

func testSegmentedControl() {
let app = XCUIApplication()
app.launch()
let segment = app.segmentedControls["optionsSegment"]
segment .buttons["Second"] .tap()
XCTAssertTrue(app.staticTexts["selectedSecond"] .exists)
}

13. Handle an Alert

func testHandleAlert() {
let app = XCUIApplication()
app.launch()
app.buttons["showAlert"] .tap()
let alert = app.alerts["Warning"]
XCTAssertTrue(alert.exists)
alert.buttons["0K"].tap()
XCTAssertFalse(alert.exists)

}

14. UI Interruption Monitor (e.g., Permissions)

func testHandlePermissionAlert() {
let app = XCUIApplication()
addUIInterruptionMonitor (withDescription: "Permissions") { alert in
if alert.buttons["Allow"].exists {
alert.buttons["Allow"] .tap()
return true
}

return false



15.

16.

17.

18.

19.

}

app.launch()

app.buttons["accessCamera"] .tap()

app.-tap() // trigger the monitor

XCTAssertTrue (app.otherElements["cameraView"] .exists)

}
Long Press Gesture

func testLongPress() {
let app = XCUIApplication()
app.launch()
let element = app.images["profilePicture"]
element.press(forDuration: 2.0)
XCTAssertTrue (app.buttons["editPhoto"] .exists)
}

Drag and Drop

func testDragAndDrop() {
let app = XCUIApplication()
app - launch()
let from = app.cells["item_1"]
let to = app.cells["item_5"]
from.press(forDuration: 1.0, thenDragTo: to)
XCTAssertTrue(to.images["item_1"].exists)

}
Pinch to Zoom

func testPinchToZoom() {
let app = XCUIApplication()
app.launch()
let map = app.images["mapView"]
map.pinch(withScale: 2.0, velocity: 1.0)
// verify zoom by checking some UI change
XCTAssertTrue (app.buttons["zoomedInButton"] .exists)
}

Launch with Arguments & Environment

func testLaunchInDemoMode() {
let app = XCUIApplication()
app.launchArguments = ["-DemoMode", "YES"]
app.launchEnvironment = ["UITest": "1"]
app.launch()
XCTAssertTrue(app.staticTexts["demoBanner"] .exists)

}

Measure App Launch Performance



func testAppLaunchPerformance() {
measure (metrics: [XCTOSSignpostMetric.applicationLaunch]) {
XCUIApplication().launch()

}
20. Capture and Attach a Screenshot

func testTakeScreenshot() {
let app = XCUIApplication()
app - launch()
// perform some actions..
let screenshot = XCUIScreen.main.screenshot()
let attachment = XCTAttachment (screenshot: screenshot)
attachment.lifetime = .keepAlways
add (attachment)

10



	Top 140 IOS Mobile Testing Interview Questions (with common XCUITest Code challenges )
	Chapter 1 – Introduction to XCUITest
	Chapter 2 – Environment Setup & Best Practices
	Chapter 3 – Locating Elements
	Chapter 4 – Basic Interactions
	Chapter 5 – Gestures & Advanced Actions
	Chapter 6 – Synchronization & Flakiness
	Chapter 7 – Alerts, Sheets & System Prompts
	Chapter 8 – Complex Controls
	Chapter 9 – Test Data & Mocking
	Chapter 10 – Screenshot & Recording
	Chapter 11 – Performance & Launch Metrics
	Chapter 12 – CI/CD Integration & Parallel Tests
	Chapter 13 – 20 common XCUITest challenges you’ll often encounter in real-world iOS UI tests


